

Catalysts and Technology Licensing A case study

E‰onMobil

Online Lube Optimization Mode calculates impact of raising nitrogen feed on catalyst life

Energy lives here

Situation

A major North American base oil producer has 2 production units. One of the units consists of a Lubes Hydrotreater/Hydrocracker (HDT/HDC) and is integrated with a hydrodewaxing unit using ExxonMobil's proprietary MSDW[™] dewaxing catalyst technology. The current production rate of this unit is 20 KBD.

Challenge

The refiner wanted to understand the impact of running a higher nitrogen feed stock in order to identify the best strategy to minimize impact on the life of the catalyst.

Solution

The Online lube optimization model includes lube hydrocracker (LHDC) and MSDW[™] dewaxing technology modules, which can be run independently or linked. Each module predicts process performance, product yields and qualities based on key operating variables such as average reactor temperature, space velocity, pressure, product fractionation cut point and separation efficiency.

In this scenario, the Online lube optimization model was used to calculate the possible impact on catalyst life from the effects of running a higher nitrogen feedstock. The ultimate decision was made by the operator based on information provided in the model.

Potential tradeoff of running higher nitrogen feedstock:

MSDW CATALYST LIFE IMPACT

HDT CATALYST LIFE IMPACT

The following is the process condition of the unit:

Feed Information:		
Waxy Sulfur	2.6	wt%
Waxy Nitrogen	884	ppm
Total Aromatics	49.6	wt%
Density @15°C	0.927	g/cc
Distillation (ASTM D2887)		
5%	389	°C
50%	458	°C
95%	511	°C

Feed 370°C+ Dewaxed Oil Qualities					
Dewaxed Oil Pour Point	-23	°C			
Dewaxed viscosity @40°C	128.8	cSt			
Dewaxed viscosity @100°C	10.6	cSt			
Dry Wax	11.7	wt%			

Feed Information:						
HDT Catalyst Volume (fract of LHDC)	1	-				
LHDC Reactor Pressure (psig)	1600	psig				
370°C+ Conversion	25	wt%				
Liquid Hourly Space Velocity	0.5	hr⁻¹				
Treat Gas Ratio	2500	scf/b				

MS	DW	' Ca	tal	yst
				1

Tower Cut Points					
Naphtha	32	°C			
Diesel	150	°C			
Extra Light Lube	300	°C			
Light Lube	300	°C			
Medium Lube	314	°C			
Heavy Lube	378	°C			

Operating Variables						
Reactor Pressure	1450	psig				
Lube Product Pour Point	-15	°C				
Liquid Hourly Space Velocity (dewaxing catalyst only)	1.6	hr⁻¹				

Product Specification			
Product CCS Reference Temperature	-30	°C	

Results*:					
No.	Parameters	Unit	N 884 ppm (a)	N 1600ppm (b)	Delta (b) - (a)
1.	HDT/HDC Product N	ppm	4.6	8.2	3.6
2.	HDT/HDC WABT	°C	347	347	0
3.	MSDW [™] Product N	ppm	0.3	0.6	0.3
4.	MSDW [™] WABT	°C	324	325	1
Catal	Catalyst life impact -0.3 yrs MSDW				

Results*:					
No.	Parameters	Unit	N 884 ppm (a)	N 1600ppm (b)	Delta (b) - (a)
1.	HDT/HDC Product N	ppm	4.6	4.6	0
2.	HDT/HDC WABT	°C	347	351	4
3.	MSDW [™] Product N	ppm	0.3	0.3	0
4.	MSDW [™] WABT	°C	324	324	0
Catalyst life impact					-0.5 yrs HDT

*Results are approximate

Collaborate with us today. https://www.exxonmobilchemical.com/ en/catalysts-and-technology-licensing/ lube-optimization-model ©2020 ExxonMobil. ExxonMobil, the ExxonMobil logo, the interlocking "X" device and other product or service names used herein are trademarks of ExxonMobil, unless indicated otherwise. This document may not be distributed, displayed, copied or altered without ExxonMobil's prior written authorization. To the extent ExxonMobil authorizes distributing, displaying and/or copying of this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers and other information. You may not copy this document to or reproduce it in whole or in part on a website. ExxonMobil does not guarantee the typical (or other) values. Any data included herein is based upon analysis of representative samples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We based the information on data believed to be reliable on the date compiled, but we do not represent, warrant, or otherwise guarantee, expressly or impliedly, the merchantability, fitness for a particular purpose, freedom from patern infrigment, suitability, accuracy, reliability, or completeness of this information or the products, materials or process edescribed. The user is solely responsible for all determinations regarding any use of material or product and any process in its territories of interets. We expressly disclaim liability for any loss, damage or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information in this document. This document is not an endorsement of any non-ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliate either directly or indirectly suffered.