

eXtreme Performance laminated and non-laminated freezer films

Energy lives here

ExxonMobil's polyethylene (PE) portfolio, including Exceed™ XP, Exceed™ and Enable™ performance polymers, delivers laminated and non-laminated freezer films with exceptional integrity that can withstand very low temperatures for less food waste. These extreme performance freezer films are easy to process and provide downgauging opportunities for more sustainable and cost-effective solutions.

High package integrity at very low temperatures

- Extreme dart impact, puncture performance
- Outstanding bag-drop performance
- Excellent hot-tack

Enhanced processability

- Good extrudability and high output
- Excellent modulus and bubble stability deliver outstanding machinability

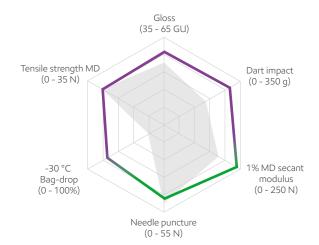
Stand-out shelf appeal

- Outstanding optics
- Good stiffness and toughness balance

Cost reduction and sustainability benefits

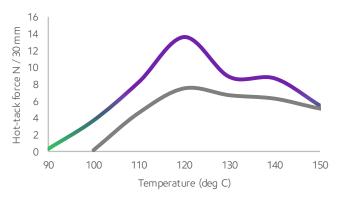
- Significant downgauging opportunities
- High film integrity prevents packaging damage, reducing spoilage and waste

Innovation opportunities


Our portfolio of performance polymers allow converters to tailor the toughness, sealing capabilities, stiffness and clarity of the film to the specific needs of each application.

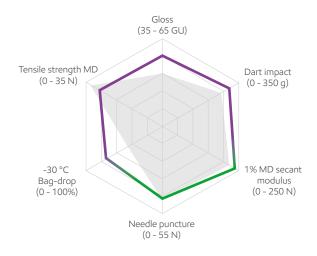
- Exceed XP when eXtreme Performance matters offers an unrivaled combination of extreme toughness and stiffness, elevated sealing capabilities and enhanced processability.
- Exceed offers superior performance by delivering excellent mechanical and sealing properties, combined with best-in-class optical properties.
- Enable delivers optimum solutions by combining excellent processing and bubble stability with higher alpha olefin (HAO) properties.

Non-laminated freezer film solutions

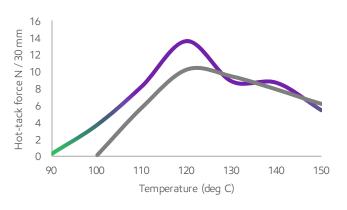

3-layer, 40 micron Exceed™ XP and Enable™ film vs. a 3-layer, 60 micron HAO-lean non-laminated reference freezer film

- Opportunity for up to 33% downgauging
- Excellent low temperature bag-drop performance
- Great hot-tack performance
- Superior stiffness despite downgauging
- · Enhanced dart and gloss
- Great melt strength for bubble stability

	Reference 60 µm	ExxonMobil solution 40 µm
Printable skin	C4-LLDPE LDPE	Exceed XP 8784 Enable 2005
Core	C4-LLDPE LDPE	Exceed XP 8784 HDPE
Sealant skin	C4-LLDPE Exceed 1018 LDPE	Exceed XP 8784 Enable 2005

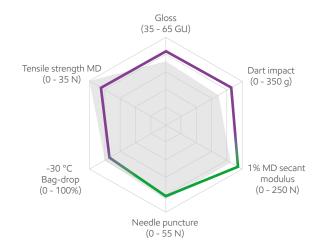

C4-LLDPE (density 0.918 g/cm³, melt index 1.0 g/10 min); LDPE (density 0.923 g/cm³, melt index 0.3 g/10 min); HDPE (density 0.961 g/cm³, melt index 0.7 g/10 min)

* Data from tests performed by or on behalf of ExxonMobil

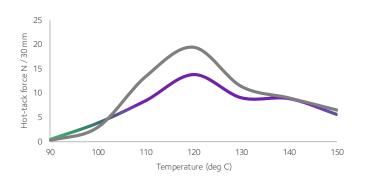

3-layer, 40 micron Exceed XP and Enable film vs a 3-layer, 60 micron HAO-rich non-laminated reference freezer film

- Opportunity of up to 33% downgauging
- Excellent low temperature bag-drop performance
- Great hot-tack performance
- Superior stiffness despite downgauging
- Enhanced dart and gloss
- · Great melt strength for bubble stability

	Reference 60 µm	ExxonMobil solution 40 µm
Skins	C8-LLDPE LDPE	Exceed XP 8784 Enable 2005
Core	C8-LLDPE LDPE	Exceed XP 8784 HDPE


C8-LLDPE (density 0.920 g/cm³, melt index 1.0 g/10 min); LDPE (density 0.923 g/cm³, melt index 0.3 g/10 min); HDPE (density 0.961 g/cm³, melt index 0.7 g/10 min)

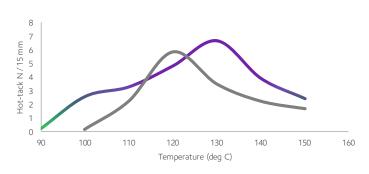
* Data from tests performed by or on behalf of ExxonMobil


3-layer, 40 micron Exceed™ XP and Enable™ film vs. a 3-layer, 50 micron HAO-rich non-laminated reference freezer film

- Opportunity of up to 20% downgauging
- Excellent low temperature bag-drop performance
- Superior stiffness despite downgauging
- Enhanced dart impact performance
- Great melt strength for bubble stability

C8-mLLDPE (density 0.916 g/cm³, melt index 1.0 g/10 min); LDPE (density 0.923 g/cm³, melt index 0.3 g/10 min); HDPE (density 0.961 g/cm³, melt index 0.7 g/10 min); MDPE (density 0.931, melt index 0.2 g/10 min)

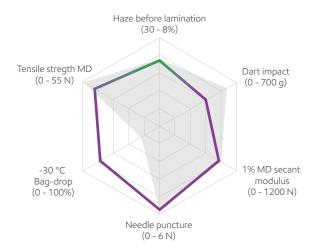
 $^{\star}\,$ Data from tests performed by or on behalf of Exxon Mobil


Laminated freezer film solutions

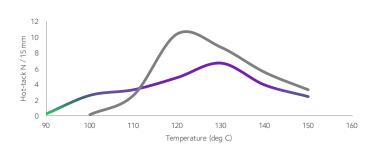
3-layer, 40 micron Exceed XP and Enable laminated freezer film vs. a 3-layer, 60 micron HAO-lean reference laminated freezer film

- Opportunity for up to 33% downgauging
- Maintained modulus despite downgauging
- · Good dart and puncture resistance
- Improved hot-tack performance
- Excellent low temperature bag-drop performance
- Great melt strength for bubble stability

	Reference 60 µm	ExxonMobil solution 40 µm
Printable skin	C4-LLDPE LDPE	Exceed XP 8784 Enable 2005
Соге	C4-LLDPE LDPE	Exceed XP 8784 HDPE
Sealant skin	C4-LLDPE LDPE Exceed 1018	Exceed XP 8784 Enable 2005

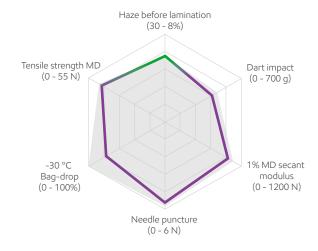

C4-LLDPE (density 0.918 g/cm³, melt index 1.0 g/10 min); LDPE (density 0.923 g/cm³, melt index 0.3 g/10 min); HDPE (density 0.961 g/cm³, melt index 0.7 g/10 min). All properties are measured after lamination with 12 μ m OPET except for haze.

* Data from tests performed by or on behalf of ExxonMobil


3-layer, 40 micron Exceed™ XP and Enable™ laminated freezer film vs. a 3-layer, 60 micron HAO-rich laminated reference freezer film

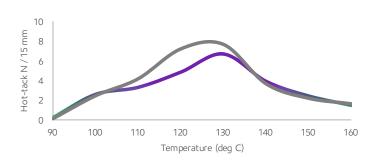
- · Opportunity for up to 33% downgauging
- · Maintained modulus despite downgauging
- · Similar puncture and tensile
- Excellent low temperature bag-drop performance
- · Great melt strength for bubble stability

	Reference 60 µm	ExxonMobil solution 40 µm
Skins	C8-LLDPE LDPE	Exceed XP 8784 Enable 2005
Core	C8-LLDPE LDPE	Exceed XP 8784 HDPE


C8-LLDPE (density $0.920~g/cm^3$, melt index 1.0~g/10~min); LDPE (density $0.923~g/cm^3$, melt index 0.3~g/10~min); HDPE (density $0.961~g/cm^3$, melt index 0.7~g/10~min). All properties are measured after lamination with $12~\mu m$ OPET except for haze.

^{*} Data from tests performed by or on behalf of ExxonMobil

3-layer, 40 micron Exceed XP and Enable laminated freezer film vs a 3-layer, 50 micron HAO-rich laminated reference freezer film


- Opportunity for up to 20% downgauging
- Maintained modulus despite downgauging
- Similar mechanical and sealing performance
- Good low temperature bag-drop performance
- Great melt strength for bubble stability

 $^{^{\}star}$ Data from tests performed by or on behalf of ExxonMobil

	Reference 50 µm	ExxonMobil solution 40 µm
Skins	C8-mLLDPE LDPE	Exceed XP 8784 Enable 2005
Core	MDPE	Exceed XP 8784 HDPE

C8-mLLDPE (density 0.916 g/cm³, melt index 1.0 g/10 min); LDPE (density 0.923 g/cm³, melt index 0.3 g/10 min); HDPE (density 0.961 g/cm³, melt index 0.7 g/10 min); MDPE (density 0.931 g/cm³, melt index 0.2 g/10 min) . All properties are measured after lamination with 12 μ m OPET except for haze.

Test item	
Tensile at break	ASTM D-882
1% Secant modulus	ASTM D-882
Dart impact	ASTM D-1709
Puncture resistance	CEN 14477 or ASTM D-5748
Hot-tack	ASTM F-1921
Gloss	ASTM D-2457
Haze	ASTM D-1003
-30°C Bag-drop	ExxonMobil method

ExxonMobil performance PE polymers — for sustainable packaging solutions

©2019 ExxonMobil, the ExxonMobil logo, the interlocking "X" device and other product or service names used herein are trademarks of ExxonMobil, unless indicated otherwise. This document may not be distributed, displayed, copied or altered without ExxonMobil's prior written authorization. To the extent ExxonMobil authorizes distributing, displaying and/or copying of this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers and other information in way not copy this document in part on a website. ExxonMobil does not guarantee the typical (or other) values. Any data included herein is based upon analysis of representability, semples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We based the information on data believed to be reliable to the date complied, but we do not represent, warrant, or otherwise guarantee, expressly or impliedly, the merchantability, fitness for particular purposes, freedom from patent infringement, suitability, accuracy, reliability, accuracy reliability, or completeness of this information or the products, materials or processes described. The user is solely responsible for all determinations regarding any use of material or product and any process in its territories of interest. We expressly disclaim liability for any loss, damage or injury directly or indirectly or indirectly suffered or "our," "ExxonMobil Toernical" and "ExxonMobil" are each used for convenience, and may include any one or more of ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliate either directly or indirectly stewarded.

