An ExxonMobil view of future trends in the PE flexible packaging industry

Energy lives here

Packaging market is evolving with consumer trends

•

Sustainability Drivers

- **GHG reduction initiatives** •
- Do more with less •
- Recyclability*

Supply Chain Localization & optimization

Direct-to-consumer & subscription service

Digitalization & e-Commerce • Omni-channel retails Higher and different packaging needs

Mental Wellbeing Quality, safety & health requirement Pet food/pet care demand skyrocketed

Consumer Experience

Personalization solutions

Sense of fulfillment and comfort

*Recyclable in communities with programs and facilities in place that collect and recycle plastic film Source: Euromonitor 2021; ExxonMobil estimate based on Value Chain interaction

Flexible packaging market trends and drivers

*Recyclable in communities with programs and facilities in place that collect and recycle plastic film.

ExonMobil

Note: Market trends and drivers compiled from engagement with the value chain

ExxonMobil's approach to flexible packaging

Differentiate with ExxonMobil performance polymers:

ExcedTM S ExcedTM ExactTM EnableTM

ExceedTM XP

ExconMobil

Do More with Less

Do More with Less

thickness reduction 2-3%/yr across film applications '10-'21

 ExxonMobil estimates that in 2021 film downgauging, achieved with the use of our Performance Polyethylene, helped to enable the film value chain to **avoid ~1.3 MT** of plastic consumption vs. 2010 reference¹

1 ExxonMobil analysis, aggregated numbers across 30 film segments and sub-segments

ExonMobil

Pillow pack

Downgauging opportunity

ExceedTM and **ExceedTM** XP performance polymers based solutions provide:

- Downgauging (DG) opportunity up to 19%
- Excellent seal and hottack performance
- Maintain bag-drop performance despite DG

	Reference 1 61 µm	Reference 2 64 µm	Exceed XP 6056 + Exceed XP 8784 52 μm	
Ratio		1/2/1		
Outer	80% C8-mLLDPE 20% LDPE	80% C8-mLLDPE 20% LDPE	60% Exceed 1012 40% Exceed XP 6056	
Core	51% C8-mLLDPE 30% C4-LLDPE 11% LDPE 8% white MB	51% C8-mLLDPE 30% C4-LLDPE 11% LDPE 8% white MB	92% Exceed XP 8784 8% white MB	
Sealing	80% C8-mLLDPE 20% LDPE	55% C8-mLLDPE 25% C8 plastomer 20% LDPE	60% Exceed 1012 40% Exceed XP 6056	

7

Exceed" XP performance polymers. Data from tests performed by or on behalf of ExxonMobil

C8-mLLDPE (1 MI; 0.916 d); LDPE (0.33 MI; 0.922 d); C4-LLDPE (1MI; 0.918d); C8 plastomer (1 MI; 0.902d)

140

150

 $\left(\right)$ 1m 2m 3m 4m 5m Drop Height ■ BOPA/Reference PE ■ BOPET/Reference PE BOPET/EM PE Reference EM 80 µm PE 80 µm PE Formulation C8 LLDPE/HDPE/LD Exceed[™]XP/Exceed[™]/HD

Bag Drop Performance

C8 LLDPE (0.920d, 1MI), ExceedTM XP 8656 (0.916d, 0.5MI), ExceedTM 1012 (0.912d, 1MI), HD (0.961d, 0.7MI), LD (0.923d, 0.75MI)

Up to **15%** cost savings potential per unit **ExonMobil**

Note: Calculation here are indicative only Bag drop performed on 2.5kg SKU Tests performed by or on behalf of ExxonMobil

Full PE laminated solution

Full PE laminated solution for multi-material laminate replacement

ExconMobil

Design for recyclability*

Toughness measured by dart drop impact, 0 – 29.5 g/μm
 Stiffness measured by 1% Secant Modulus (MD), 180 – 380 Mpa

ExonMobil

PE//PE structures

Exceed[™] S, Exceed[™] XP, Exceed[™] and Enable[™] performance polymers and Exact[™] plastomers

	Key requirements	ExxonMobil solutions	Grades	
Substrate film	Modulus Flatness	MDO solutions	Exceed S Exceed XP Enable	
	Optics Heat resistance	Non-MDO solutions	Exceed HTA 108	
Sealant film	Toughness Low SIT Seal strength COF control	3-layer/5-layer solutions	Exceed S Exceed XP Exceed Exact	

ExonMobil

Substrates for Flexible Packaging

Film Attributes Comparison*

Attributes	Non-MDO PE	MDO PE
Stiffness	-	++
Toughness	+	-
MD Tear	+	-
Heat Resistance	+	+
Cost Competitive**	++	+
Printing	-	++
Bag Making Process	-	+

*EM Estimate & Common Industry Practice as of date **MDO PE will require an additional capability investment

ExonMobil

160 120 Gloss (GU) 80 40 0 20 15 5 0 10 Haze (%) Non-MDO PE-PE Laminate (60µ) MDO PE (Enable, 25µ) MDO PE (HDPE, 20µ) (Exceed, Enable 30µ Substrate) BOPA (15µ) BOPP (20µ) BOPET (12µ)

*MDO PE (Enable) with EnableTM 4002 performance PE in the skin (MDO ratio 4.8)

and MDO PE (HDPE) with HDPE in the skin (MDO ratio 6); HDPE (0.961g/cm³, 0.7g/10min)

**Non-MDO PE-PE Laminate with ExceedTM 1327performance PE in the skins and EnableTM 4002 performance PE in the core 13

**All data from tests performed by or on behalf of ExxonMobil

MDO PE Substrates with ExxonMobil performance PE

MDO PE substrate solution using **Enable**[™] & **Exceed**[™] **S** performance polymers

- Easy Processing
 - Excellent bubble stability
 - Easy stretch ability and separation of flattened bubble
- Excellent optics
 - Similar haze/gloss properties to BOPP/BOPA
 - As low as ~5%
- Great Mechanical Properties
 - Film properties consistency assurance
 - Balance between MD and TD Elmendorf tear
 - Great MD modulus for both flexo and rotogravure printability

Ref is MDO PE based substrate using mC8LLDPE
A is MDO PE based substrate using Enable[™] performance PE
B is MDO PE based substrate using Exceed[™] S performance PE

E‰onMobil

Non-MDO PE Substrates with ExxonMobil performance PE

Ease of sealing with Exceed[™] performance PE

- Enhanced sealability comparing to C8 mLLDPE leads to improved package integrity
 - Broad hot-tack window similar with C8 mLLDPE

ExonMobil

- Excellent SIT with potential ~5°C lower than leading C8 mLLDPE

Ref: Exceed 1015 (1MI;0.915 d); Exceed 1012 (1MI;0.912 d); C8 mLLDPE (1 MI; 0.916 d)

16

Improve sealing speed with ExxonMobil Exact[™] Plastomers

Seal temp (°C) needed at fixed line speed to obtain hermetic packs

Max line speed (m/min) at fixed seal temperature to obtain hermetic packs

	Plastomer coex structure, 50µm, 1/2/1
Inner skin	75% Exceed™ 1018 + 25% Enable™ 2005
Core	83% Enable [™] 2005 + 17% HDPE (0.961g/cm³, 0.7 g/10min)
Sealant skin	100% or 30% plastomer with remainder Exceed [∞] 1018

Exact[™] 3236 performed fluently on HFFS lines during packaging trial

ExonMobil

Exact" plastomer resins. Data from tests performed by or on behalf of ExxonMobil. Packaging line data (seal temp. and max line speed) are generated by ExxonMobil at third party, and should only be used as comparative data

Packaging integrity in full PE solution

ExxonMobil 5L MDO PE// PE solution using **Exceed**TM **XP, Exceed**TM, **Enable**TM performance polymers can provide:

- Excellent bag drop performance
- Fulfilled end use requirements
- Full PE structure for improved recyclability potential*

Substrate 25 µm	Sealant 120 μm		
MDO PE (EM Solution)	Exceed XP 8784, Exceed [®] 1012 HDPE		
 BOPA (15 µm)	Masket sof		
 BOPET (12 µm)	ויומו גפנ ו פו		

* Recyclable in communities with programs and facilities in place that collect and recycle plastic film

Data from tests performed by or on behalf of ExxonMobil 18

Enhanced package integrity with Exceed[™] S performance PE

BAG DROP – Laminated VFFS BAGS

- Failure on the wall of the bags

ZN C8 LL + 15% HD

EXON

Exceed S 9243

	Reference	Exceed S 9243	
	60 μm 1/3/1		
Sealant skin ¹	mLL C8 (1.0; 0.916) + 10% LD150	Exceed 1012 + 10% LD150	
Core ²	ZN C8 (1.0; 0.920) + 15% HDPE ³	Exceed S 9243	
Skin ¹	Exceed 1018		
Adhesive			
Substrate	25 μm MDO PE		

Exceed^{••} S performance polyethylene enhances package toughness

• Exceed S 9243 improves dart and bag drop performance

Exceptional stiffness enables simplification & optimization

- Eliminates the need to 15% HDPE to the core
- Enables change to 0.912d sealant skin to improve sealing

Approach to create recyclable* high barrier PE films

* The terms "recyclable" and "recyclability" as used throughout this portion of the presentation presentation are intended to refer to the potential for recyclability of full PE solutions designed and manufactured in accordance with recycling guidelines such as PRE RecyClass. Ultimate recyclability of full PE packaging incorporating ExxonMobil's performance PE resins will depend on a number of factors outside of ExxonMobil's control including, but not limited to, availability of programs and facilities that collect and recycle plastic packaging within a given community. Any and all claims about the recyclability of full PE-packaging are the sole responsibility of the packaging manufacturer

E‰onMobil

There are various approaches to barrier in recyclable* PE-based packaging

N.B. All barrier values are to be considered as indicative. Customers need to evaluate themselves which levels of barrier they can achieve.

Barrier scale	*****	*****	*****	****	*****
OTR (23°C; 0% r.h.) [cm³/m²/d]	>100	10 – 100	1 – 10	0.1 – 1	<0.1
WVTR (37.8°C; 90% r.h.) [g/m²/d]	>10	3 – 10	0.5 – 3	0.1 – 0.5	<0.1

Data from tests performed by or on behalf of ExxonMobil

* Recyclable in communities with programs and facilities in place that collect and recycle plastic film

K Show Collaboration Showcase

Exceed[™] XP Exact[™] Enable[™] Exceed[™] S Case Study

ExonMobil

erema group

Selene

Creating a circular film to film loop: from a recyclable^{*} full PE barrier packaging solution to a high end heavy duty sack

nordmeccanico

aroup

Exceed[™] XP Exact[™] Enable[™] Exceed[™] S Case Study

ExonMobil

Recyclable^{*} 97% PE barrier pouch packaging with high oxygen barrier, unique optics and outstanding package integrity

E‰onMobil

Henke

HOSOKAWA

ALPINE

* Recyclable in communities with programs and facilities in place that collect and recycle plastic film

K Show Collaboration Showcase

Exceed[™] XP Exact[™] Exceed[™] S Case Study

E∕∕onMobil

* Recyclable in communities with programs and facilities in place that collect and recycle plastic film

Collaborating with the value chain

Kam, Irene Say-Mong PE Senior Account Manager irene.sm.kam@exxonmobil.com

Wang, Ziyi Ashley Market Development Manager (Primary Packaging) ziyi.wang1@exxonmobil.com

Questions ?

Muir, Troy F PE Senior Product Engineer troy.f.muir@exxonmobil.com

exxonmobilchemical.com/pe

©2023 ExxonMobil. ExxonMobil, the ExxonMobil logo, the interlocking "X" device and other product or service names used herein are trademarks of ExxonMobil, unless indicated otherwise. This document may not be distributed, displayed, copied or altered without ExxonMobil's prior written authorization. To the extent ExxonMobil authorizes distributing, displaying and/or copying of this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers and other information. You may not copy this document to or reproduce it in whole or in part on a website. ExxonMobil does not guarantee the typical (or other) values. Any data included herein is based upon analysis of representative samples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We based the information on data believed to be reliable on the date compiled, but we do not represent, warrant, or otherwise guarantee, expressly or impliedly, the merchantability, fitness for a particular purpose, freedom from patent infringement, suitability, accuracy, reliability, or completeness of this information or the products, materials or processes described. The user is solely responsible for all determinations regarding any use of material or product and any process in its territories of interest. We expressly disclaim liability for any loss, damage or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information. The terms "we," "our," "ExxonMobil Product Solutions" and "ExxonMobil" are each used for convenience, and may include any one or more of ExxonMobil Product Solutions Company, ExxonMobil Technology and Engineering Company, Exxon Mobil Corporation, or any affiliate either directly or indirectly stewarded.

E‰onMobil

Test Methods

Test item	Test method
Oxygen transmission rate (OTR)	ExxonMobil test method
Water-vapor transmission rate (WVTR)	ExxonMobil test method
Tensile properties on film at room temperature	ExxonMobil test method
Dart drop impact resistance by free falling dart : method A and B	ExxonMobil test method
Puncture - needle test	ExxonMobil test method
Bag drop test	ExxonMobil test method
Bending stiffness	ExxonMobil test method
Haze	ExxonMobil test method
Gloss 45°	ExxonMobil test method
Heat seal force	ASTM F-88-15
Hot Tack Strength	ASTM D-1921-12
COF film-film	ASTM D1894
COF film-metal	EM method
TD creep resistance	EM method

ExonMobil