

Chemical webinar series

Rethink Recycle: Inspiring new solutions for recycled plastics

November 2020

ExonMobil Vistamaxx^{**} performance polymers

Rethink Recycle

Every year 400m tons of plastic are produced

Every year 400m tons of plastic are produced

300m tons of plastic waste

E‰onMobil

300m tons of plastic waste

E‰onMobil

300m tons of plastic waste

E%onMobil

Vistamaxx[™] performance polymers

Metallocene

Semi-crystalline copolymer 700 kT capacity

E**∦**onMobil

Expanding growth potential

Key attributes inspire innovative solutions

Vistamaxx[™] performance polymers

Enabling recyclability of multiple flooring systems

Vistamaxx[™] performance polymers empower designers to consider end-of-product-life recycling.

Unlock new applications

Increase recycled content Reduce raw material cost

Let's take a closer look

Non-polar streams

with Vistamaxx™ performance polymers

PE film PP rigid HDPE rigid

Polar

streams

with MAH-grafted Vistamaxx™ performance polymers

e.g. **Acti-Tech" compatibilizers** from Nordic Grafting Company

PA & EVOH barrier film PET based

E**∦**onMobil

Upgrade PE stream contaminated with PP in blown film

Vistamaxx[®] performance polymer solution Recycle + 5% Vistamaxx[®] 6102

Application case study - garbage bags

Industry challenges

- Difficult to balance cost and performance
- Market demand to incorporate more recycled plastics

Incumbent solution

60% LLDPE + 20% PIR/PCR PE + 20% Filler MB

Vistamaxx[™] performance polymer solution

■ 15% LLDPE + 60% PIR/PCR PE + 20% Filler MB + 5% VistamaxxTM 6102

Key learnings

- Maintaining dart impact and tear resistance while reducing material cost
- Allowing higher percentage of recycled plastics, even with PP contamination

Case studies are based on industrial trials and learnings are believed to be reliable and representative. For optimized performance, comprehensive design of experiments is highly recommended. Please refer to general disclaimer at the end.

E‰onMobil

Upgrade PP stream contaminated with PE in injection molding

Flex modulus

Notched charpy impact @23°C

Ex on Mobil

Vistamaxx[™] performance polymer solution

Recycle + 5% Vistamaxx[™] 6202

Virgin ICP

Application case study – reusable crates & pallets

Industry challenge

- Process issues in manufacturing and low yield when using PCR
- Damages in service after recurring loads due to poor impact resistance

Incumbent solution

• 100% PCR PP

Vistamaxx^{**} performance polymer solution

■ 95% PCR PP + 5% VistamaxxTM 6202

Key learnings

- Optimized flow and broader processing window during compounding and injection molding process
- Improving impact strength and toughness while allowing higher percentage of recycled plastics, even with PE contamination

Case studies are based on industrial trials and learnings are believed to be reliable and representative. For optimized performance, comprehensive design of experiments is highly recommended. Please refer to general disclaimer at the end.

E‰onMobil

E∕∕onMobil

Upgrade HDPE stream contaminated with PP in blow molding

Elongation at break

Notched charpy impact @23°C

Recycle reference

Vistamaxx[®] performance polymer solution Recycle + 5% Vistamaxx[®] 6102

Vistamaxx[®] performance polymer solution Recycle + 10% Vistamaxx[®] 6102

Improving ESCR of blow molded HDPE recycled streams

ESCR 10% Igepal @ 50°C f50 Estimated cost savings versus virgin Extended part Reduce raw life material cost 3 h 6 h 9 h 12 h 15 h 18 h 15 % 30 % 45 % 60 % Recycle reference

Vistamaxx[™] performance polymer solution

Recycle + 5% Vistamaxx[™] 3020FL

Ex on Mobil

50/50 blend virgin / recycle reference

Case study: incorporating recycle

Mobil

Advanced Fuel Economy

國

Fully Synthetic

Warranty Prote

Requirements

for 5W-30 & 10W

Recycle used of at your loca Walmart ::

Attributes

• ESCR improvement, flexibility & impact

Description

- 5 U.S. Qts. monolayer blow molded HDPE bottle
- Customer requirements:
 - Incorporation of internal regrind and PCR
 - Survive transportation & stacking conditions with no cracks
 - Balance topload and ESCR

Incumbent solution

- Virgin HDPE combined w/ regrind and PCR HDPE
- Did not meet ESCR specifications demonstrated through leaks

Vistamaxx[™] performance polymer solution

- Vistamaxx[™] 3020FL + regrind + PCR + virgin HDPE
- Bottles met internal specifications for topload and increased ESCR

Why Vistamaxx[™] polymers solution?

- Increase ESCR properties of the formulation
- Higher flexibility did not compromise topload requirements

ExonMobil

Upgrade of PA & EVOH barrier film recycled streams

143

£o

3

23

0)

0°

đ

E**i∕x**onMobil

Upgrade PE/PA virgin blends in blown film

4X	imp	bact
----	-----	------

2X Tear resistance

Upgrade PE/PP/PA/EVOH recycled stream in blown film

Relative Elmendorf tear MD versus virgin C4 LLDPE¹

Relative cost versus virgin C4 LLDPE

Virgin C4 LLDPE

Barrier film recycle reference (30% PE, 40% PP, 25% PA, 5% EVOH)

92.5% barrier film recycle reference

+ 7.5% MAH-grafted Vistamaxx[™] performance polymer

46.25% barrier film recycle reference

+ 46.25% Exceed" 1018 peformance polyethylene

+ 7.5% MAH-grafted Vistamaxx[™] performance polymer

Data obtained by or on behalf of ExxonMobil Chemical

Improved opticals through compounding

All films are 50µm and monolayer

Compatibilizer was added to 60 % PE / 40 % PA barrier film recycled stream

E**∦**onMobil

MAH-grafted Vistamaxx[™] performance polymers upgrade PP/PET blends

Functionalization enables alloy of non-compatible polymers:

- Enhances & controls morphology
- Improves blend performance by chemical linking
- Increases performance of recyclates

Images courtesy of Ghent University

[1] Kuzmanović, M., Delva, L., Mi, D., Mi, D., Martins, C. I., Cardon, L., & Ragaert, K. (2018). Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA. Polymers, 10(3), 291. <u>https://doi.org/10.3390/polym10030291</u> PP/PET blend at 80 wt% PP and 20 wt% PET

MAH-grafted Vistamaxx[™] performance polymers upgrade PP/PET blends

Functional evaluation of compatibilization systems for recycled PP-PET blends L. Delva, M. Kuzmanovic, T. Wieme, N. Mys, K. Ragaert, PPS conference 2017, Mexico PP/PET blend at 80 wt% PP and 20 wt% PET

ExonMobil

Cleaner beaches, useful products

E**∦**onMobil

Vistamaxx[®] performance polymers

Working together to Rethink Recycle

#RethinkRecycle

Vistamaxx[®] performance polymers

KonMobil

Labor

EDENNO

exxonmobilchemical.com/rethinkrecycle | atandocabos.cl | erema.com | zaboplant.nl

Compatibilizes PP and PE

Up to 45% better impact strength

Up to 40% better flow rate •

Unlocks new product possibilities

Chemical webinar series

Scan to contact an expert

Interested in learning more? exxonmobilchemical.com/rethinkrecycle

Martín Machado Customer application development engineer

Chemical webinar series

Thank you for attending

©2020 ExxonMobil, ExxonMobil, the ExxonMobil logo, the interlocking "X" device and other product or service names used herein are trademarks of ExxonMobil, unless indicated otherwise. This document may not be distributed, displayed, copied or altered without ExxonMobil's prior written authorization. To the extent ExxonMobil authorizes distributing, displaying and/or copying of this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers and other information. You may not copy this document to or reproduce it in whole or in part on a website. ExxonMobil does not guarantee the typical (or other) values. Any data included herein is based upon analysis of representative samples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We based the information on data believed to be reliable on the date compiled, but we do not represent, warrant, or otherwise guarantee, expressly or impliedly, fits test for a particular purpose, freedom from patent infringement, solely responsible completed, or indurectly suffered or incurred as a result of or related to anyone using or relying on any of the information in this document. This document. This document is unaltered any non-ExxonMobil product or process, and we expressly disclaim any contrary implication. The terms "ve," "our," "ExxonMobil Chemical" and "ExxonMobil" are each used for convenience, and may include any one or more of ExxonMobil Company, Exxon Mobil Comparison, or any affiliate either directly or indirectly stewarded.

Test

Elmendorf tear strength Impact resistance by free-falling dart: Method A and B Microscopy FIB-SEM sample preparation Flexural modulus

Gardner impact

Melt flow rate

Notched Charpy impact

Test method based on ASTM D-1922-09 ASTM D-1709

- Stain with RuO4
- Stuck to Al stubs with carbon tape and sputter coated with gold

ASTM D790

ISO 179

ASTM D1238

ASTM D5420

